The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
Hannah Haberkern , Shivam S Chitnis , Philip M Hubbard , Tobias Goulet , Ann M Hermundstad , Vivek Jayaraman
bioRxiv. 2022 May 18:. doi: 10.1101/2022.05.17.492284
+ Expand Abstract
Many animals rely on a representation of head direction for flexible, goal-directed navigation. In insects, a compass-like head direction representation is maintained in a conserved brain region called the central complex. This head direction representation is updated by self-motion information and by tethering to sensory cues in the surroundings through a plasticity mechanism. However, under natural settings, some of these sensory cues may temporarily disappear—for example, when clouds hide the sun—and prominent landmarks at different distances from the insect may move across the animal's field of view during translation, creating potential conflicts for a neural compass. We used two-photon calcium imaging in head-fixed Drosophila behaving in virtual reality to monitor the fly's compass during navigation in immersive naturalistic environments with approachable local landmarks. We found that the fly's compass remains stable even in these settings by tethering to available global cues, likely preserving the animal's ability to perform compass-driven behaviors such as maintaining a constant heading.
Noorman M, Hulse BK, Jayaraman V, Romani S, Hermundstad AM
Nat Neurosci. 2024 Oct 03:. doi: 10.1038/s41593-024-01766-5
+ Expand Abstract
Many animals rely on persistent internal representations of continuous variables for working memory, navigation, and motor control. Existing theories typically assume that large networks of neurons are required to maintain such representations accurately; networks with few neurons are thought to generate discrete representations. However, analysis of two-photon calcium imaging data from tethered flies walking in darkness suggests that their small head-direction system can maintain a surprisingly continuous and accurate representation. We thus ask whether it is possible for a small network to generate a continuous, rather than discrete, representation of such a variable. We show analytically that even very small networks can be tuned to maintain continuous internal representations, but this comes at the cost of sensitivity to noise and variations in tuning. This work expands the computational repertoire of small networks, and raises the possibility that larger networks could represent more and higher-dimensional variables than previously thought.
Sun Y, Nern A, Franconville R, Dana H, Schreiter ER, Looger LL, Svoboda K, Kim DS, Hermundstad AM, Jayaraman V
Nature Neuroscience. 2017 Jun 12;20(8):1104-13. doi: 10.1038/nn.4581
+ Expand Abstract
Many animals orient using visual cues, but how a single cue is selected from among many is poorly understood. Here we show that Drosophila ring neurons—central brain neurons implicated in navigation—display visual stimulus selection. Using in vivo two-color two-photon imaging with genetically encoded calcium indicators, we demonstrate that individual ring neurons inherit simple-cell-like receptive fields from their upstream partners. Stimuli in the contralateral visual field suppressed responses to ipsilateral stimuli in both populations. Suppression strength depended on when and where the contralateral stimulus was presented, an effect stronger in ring neurons than in their upstream inputs. This history-dependent effect on the temporal structure of visual responses, which was well modeled by a simple biphasic filter, may determine how visual references are selected for the fly's internal compass. Our approach highlights how two-color calcium imaging can help identify and localize the origins of sensory transformations across synaptically connected neural populations.
Julie A. Charlton , Wiktor F. M?ynarski , Yoon H. Bai , Ann M. Hermundstad , Robbe L. T. Goris
bioRxiv. 2022 May 24:. doi: 10.1101/2022.05.23.493109
+ Expand Abstract
To interpret the sensory environment, the brain combines ambiguous sensory measurements with context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages the statistical structure of the task to maximize decision accuracy and show that its decisions are biased by task context. The magnitude of this decision bias is not a fixed property of the sensory measurement but depends on the observer's belief about the current context. The model therefore predicts that decision bias will grow with the reliability of the context cue, the stability of the environment, and with the number of trials since the last context switch. Analysis of human choice data validates all three predictions, providing evidence that the brain continuously updates probabilistic representations of the environment to best interpret an uncertain, ever-changing world.
Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, Frithsen A, Johnson A, Tipper CM, Miller MB, Grafton ST, Carlson JM
Proceedings of the National Academy of Sciences of the United States of America. 2013 Apr 9;110(15):6169-74. doi: 10.1073/pnas.1219562110
+ Expand Abstract
Magnetic resonance imaging enables the noninvasive mapping of both anatomical white matter connectivity and dynamic patterns of neural activity in the human brain. We examine the relationship between the structural properties of white matter streamlines (structural connectivity) and the functional properties of correlations in neural activity (functional connectivity) within 84 healthy human subjects both at rest and during the performance of attention- and memory-demanding tasks. We show that structural properties, including the length, number, and spatial location of white matter streamlines, are indicative of and can be inferred from the strength of resting-state and task-based functional correlations between brain regions. These results, which are both representative of the entire set of subjects and consistently observed within individual subjects, uncover robust links between structural and functional connectivity in the human brain.
The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.
PLoS One. 2021 Aug 11;16(8):e0256034. doi: 10.1371/journal.pone.0256034
+ Expand Abstract
Identifying coordinated activity within complex systems is essential to linking their structure and function. We study collective activity in networks of pulse-coupled oscillators that have variable network connectivity and integrate-and-fire dynamics. Starting from random initial conditions, we see the emergence of three broad classes of behaviors that differ in their collective spiking statistics. In the first class ("temporally-irregular"), all nodes have variable inter-spike intervals, and the resulting firing patterns are irregular. In the second ("temporally-regular"), the network generates a coherent, repeating pattern of activity in which all nodes fire with the same constant inter-spike interval. In the third ("chimeric"), subgroups of coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previously been observed in networks of oscillators; here, we find that the notions of temporally-regular and chimeric states encompass a much richer set of dynamical patterns than has yet been described. We also find that degree heterogeneity and connection density have a strong effect on the resulting state: in binomial random networks, high degree variance and intermediate connection density tend to produce temporally-irregular dynamics, while low degree variance and high connection density tend to produce temporally-regular dynamics. Chimera states arise with more frequency in networks with intermediate degree variance and either high or low connection densities. Finally, we demonstrate that a normalized compression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be used to distinguish these three classes of behavior even when the phase relationship between nodes is arbitrary.
Hermundstad AM, Briguglio JJ, Conte MM, Victor JD, Balasubramanian V, Tka?ik G
eLife. 2014;3:. doi: 10.7554/eLife.03722
+ Expand Abstract
Information processing in the sensory periphery is shaped by natural stimulus statistics. In the periphery, a transmission bottleneck constrains performance; thus efficient coding implies that natural signal components with a predictably wider range should be compressed. In a different regime--when sampling limitations constrain performance--efficient coding implies that more resources should be allocated to informative features that are more variable. We propose that this regime is relevant for sensory cortex when it extracts complex features from limited numbers of sensory samples. To test this prediction, we use central visual processing as a model: we show that visual sensitivity for local multi-point spatial correlations, described by dozens of independently-measured parameters, can be quantitatively predicted from the structure of natural images. This suggests that efficient coding applies centrally, where it extends to higher-order sensory features and operates in a regime in which sensitivity increases with feature variability.
JAPANESE FISHERMEN. JAPANESE FISHERMEN. set with tooth powder (very uphill work), and sawing off picture we are afraid he has been caught in a trap. BOMBAY “I’ve sent the caretaker here—he’s as dependable as sunrise!—to a place out near Montauk Point lighthouse, with Mr. Everdail’s fast hydroplane boat and I’ve sent a radio message to the yacht captain to be on the watch to meet the hydroplane pretty well out to sea, and transfer the necklace to the boat. Then, the yacht will come on and make harbor here, as though nothing had happened—and all the time the emeralds will be on the way, down the Sound and East River, to a wharf where I’ll have a motor car, with a dependable chum of mine, to take charge and carry the package to safe deposit, get a receipt—and there you are!” In the mouth of a broad channel they touched water and ran out of momentum with the wings hovering over the grassy bank to either side. “Stuck. It won’t come back. It’s the jinx! Hoodoo! We’re heading down for the bay and I can’t get the nose up!” "I don't mind, and neither does Captain Landor." Her guardian had recently gotten his captaincy. "She will shrink, I guess, at first," he admitted. "Women who ain't seen much of life kind of think they ought to draw aside their skirts, and all that. They were taught copy-book morals about touching pitch, I reckon,"—he was wise concerning women now—"and it takes a good deal of hard experience to teach them that it ain't so. But she'll take my word for it." "Sergeant, didn't I do well?" asked Abel Waite, in the tone that he would have inquired of his teacher about a recitation. "I done just as you told me. I kep' my eye on the tall feller in front, who was wavin' his gun and yellin' at the rest to come on. I aimed just below his belt, an' he went down just like I've seen a beef when pap shot him." "Yes, it must be about poor Si; nobody else but him," added Sophia with a wail. "Wonder which one o' them is the 200th Injianny's?" said Si to Shorty. BOOK IV TREACHERIES Chapter 1 "What dost thou here, John Kirkby, and why these screams?" "If it please you, my lord, when I was a boy, I was one morning rubbing down one of the late lord's horses for the servitor, whose duty it was to do it, when, all on a sudden, as I was stooping down to wipe the horse's feet, I saw the wall at the back of one of the stalls open, and out came the old baron. He looked round, but fortunately, or it may be unfortunately for him who is now lord, he did not see me." HoME亚洲第一狼人综合网站
ENTER NUMBET 0018gybafang.com.cn jiriyou.com.cn www.annacara.com.cn btshenghua.com.cn yanmeihui.net.cn fxqj269.com.cn www.nioni.com.cn eocx.com.cn daiy12.com.cn www.xixunivf.com.cn