Trends in Biochemical Sciences. 2021 Feb 10:. doi: 10.1016/j.tibs.2021.01.002
+ Expand Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Trends in Biochemical Sciences. 2021 Jul 01;46(7):535-549. doi: 10.1016/j.tibs.2021.01.002
+ Expand Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.
Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin B, Chen T, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER
Science. 2019 Aug 13;365(6454):699-704. doi: 10.1126/science.aav6416
+ Expand Abstract
Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.
Lavis LD, Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T
Nature Methods. 2016 Oct 24;13(12):985-8. doi: 10.1038/nmeth.4034
+ Expand Abstract
Small molecule fluorophores are important tools for advanced imaging experiments. The development of self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in live-cell microscopy. We recently described a general method for improving the brightness and photostability of small, cell-permeable fluorophores, resulting in the novel azetidine-containing "Janelia Fluor" (JF) dyes. Here, we refine and extend the utility of the JF dyes by synthesizing photoactivatable derivatives that are compatible with live cell labeling strategies. These compounds retain the superior brightness of the JF dyes once activated, but their facile photoactivation also enables improved single-particle tracking and localization microscopy experiments.
Proceedings of the National Academy of Sciences of the United States of America. 2014 Mar 10;111(12):4478-83. doi: 10.1073/pnas.1402612111
+ Expand Abstract
To gain insights into coordinated lineage-specification and morphogenetic processes during early embryogenesis, here we report a systematic identification of transcriptional programs mediated by a key developmental regulator-Brachyury. High-resolution chromosomal localization mapping of Brachyury by ChIP sequencing and ChIP-exonuclease revealed distinct sequence signatures enriched in Brachyury-bound enhancers. A combination of genome-wide in vitro and in vivo perturbation analysis and cross-species evolutionary comparison unveiled a detailed Brachyury-dependent gene-regulatory network that directly links the function of Brachyury to diverse developmental pathways and cellular housekeeping programs. We also show that Brachyury functions primarily as a transcriptional activator genome-wide and that an unexpected gene-regulatory feedback loop consisting of Brachyury, Foxa2, and Sox17 directs proper stem-cell lineage commitment during streak formation. Target gene and mRNA-sequencing correlation analysis of the T(c) mouse model supports a crucial role of Brachyury in up-regulating multiple key hematopoietic and muscle-fate regulators. Our results thus chart a comprehensive map of the Brachyury-mediated gene-regulatory network and how it influences in vivo developmental homeostasis and coordination.
The contrast between the disruption of genome topology after cohesin loss and the lack of downstream gene expression changes instigates intense debates regarding the structure-function relationship between genome and gene regulation. Here, by analyzing transcriptome and chromatin accessibility at the single-cell level, we discover that, instead of dictating population-wide gene expression levels, cohesin supplies a general function to neutralize stochastic coexpression tendencies of cis-linked genes in single cells. Notably, cohesin loss induces widespread gene coactivation and chromatin co-opening tens of million bases apart in cis. Spatial genome and protein imaging reveals that cohesin prevents gene co-bursting along the chromosome and blocks spatial mixing of transcriptional hubs. Single-molecule imaging shows that cohesin confines the exploration of diverse enhancer and core promoter binding transcriptional regulators. Together, these results support that cohesin arranges nuclear topology to control gene coexpression in single cells.
Deciphering the molecular basis of pluripotency is fundamental to our understanding of development and embryonic stem cell function. Here, we report that TAF3, a TBP-associated core promoter factor, is highly enriched in ES cells. In this context, TAF3 is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. In addition to its role in the core promoter recognition complex TFIID, genome-wide binding studies reveal that TAF3 localizes to a subset of chromosomal regions bound by CTCF/cohesin that are selectively associated with genes upregulated by TAF3. Notably, CTCF directly recruits TAF3 to promoter distal sites and TAF3-dependent DNA looping is observed between the promoter distal sites and core promoters occupied by TAF3/CTCF/cohesin. Together, our findings support a new role of TAF3 in mediating long-range chromatin regulatory interactions that safeguard the finely-balanced transcriptional programs underlying pluripotency.
Daugird TA, Shi Y, Holland KL, Rostamian H, Liu Z, Lavis LD, Rodriguez J, Strahl BD, Legant WR
Nat. Commun.. 2024 May 16:. doi: 10.1038/s41467-024-48562-0
+ Expand Abstract
In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.
Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.
JAPANESE FISHERMEN. JAPANESE FISHERMEN. set with tooth powder (very uphill work), and sawing off picture we are afraid he has been caught in a trap. BOMBAY “I’ve sent the caretaker here—he’s as dependable as sunrise!—to a place out near Montauk Point lighthouse, with Mr. Everdail’s fast hydroplane boat and I’ve sent a radio message to the yacht captain to be on the watch to meet the hydroplane pretty well out to sea, and transfer the necklace to the boat. Then, the yacht will come on and make harbor here, as though nothing had happened—and all the time the emeralds will be on the way, down the Sound and East River, to a wharf where I’ll have a motor car, with a dependable chum of mine, to take charge and carry the package to safe deposit, get a receipt—and there you are!” In the mouth of a broad channel they touched water and ran out of momentum with the wings hovering over the grassy bank to either side. “Stuck. It won’t come back. It’s the jinx! Hoodoo! We’re heading down for the bay and I can’t get the nose up!” "I don't mind, and neither does Captain Landor." Her guardian had recently gotten his captaincy. "She will shrink, I guess, at first," he admitted. "Women who ain't seen much of life kind of think they ought to draw aside their skirts, and all that. They were taught copy-book morals about touching pitch, I reckon,"—he was wise concerning women now—"and it takes a good deal of hard experience to teach them that it ain't so. But she'll take my word for it." "Sergeant, didn't I do well?" asked Abel Waite, in the tone that he would have inquired of his teacher about a recitation. "I done just as you told me. I kep' my eye on the tall feller in front, who was wavin' his gun and yellin' at the rest to come on. I aimed just below his belt, an' he went down just like I've seen a beef when pap shot him." "Yes, it must be about poor Si; nobody else but him," added Sophia with a wail. "Wonder which one o' them is the 200th Injianny's?" said Si to Shorty. BOOK IV TREACHERIES Chapter 1 "What dost thou here, John Kirkby, and why these screams?" "If it please you, my lord, when I was a boy, I was one morning rubbing down one of the late lord's horses for the servitor, whose duty it was to do it, when, all on a sudden, as I was stooping down to wipe the horse's feet, I saw the wall at the back of one of the stalls open, and out came the old baron. He looked round, but fortunately, or it may be unfortunately for him who is now lord, he did not see me." HoME亚洲第一狼人综合网站
ENTER NUMBET 0018www.esunda.com.cn b009.com.cn www.jianshenyun.com.cn www.sbjgjkqc.com.cn hxrx.com.cn yzzxo.com.cn zz601.com.cn www.krce.com.cn nepci.com.cn www.lyxssnc.com.cn